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Scheduling

Office worker

⇒ CPU
Task

⇒ Application

Scheduling: Choosing the order in which
tasks are performed

Before 1955: Human operators
1955: 1st OS with batch scheduler (GM-NAA)
1967: Multiprogramming (IBM OS/360 MFT/MVT)
1968: Multiprocessors (IBM OS/360 M65MP)
1971: Time sharing (IBM OS/360)
1990s: NUMA architectures
2000s: Heterogeneous architectures, SMT,

frequency scaling, . . .
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When Schedulers Answer to Hardware Evolution

Single core Time management

batch processing

time sharing

preemption{

Resources are more and more complex to manage!
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Application Requirements

CPU

Memory

I/O Latency

Sync

Requirements vary greatly from one application to another!
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General Purpose Schedulers

How do we satisfy these varying application requirements
on all available hardware features?

Application-Specific

7 Impractical, requires lots of human power.

We cannot make 1,000 schedulers for a 1,000
applications, but we can make 1 scheduler for a
1,000 applications.

– S. Karamazov, probably

General-Purpose

4 Easier to maintain,
7 but more and more complex.

Most OSs implement a single scheduler
(Linux, FreeBSD, Windows, OS X)
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Limits of General-Purpose Schedulers: the CFS Example
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From 6,706 to 26,213 lines of code in
13 years (×3.9)

14 configuration options → 16,384 combinations
Features overlap and are intertwined

Maintenance and configuration are hard and impractical
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Axes of Improvement

What if we could build 1,000 schedulers
for 1,000 applications?

How can we help developers implement efficient schedulers in a safe and easy way?
How can we help users get the best performance for their applications?

Axis 1
Scheduler Development

Axis 2
Performance Enhancement

Axis 3
Application-Specific Schedulers
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Axis 1

Scheduler Development



Writing Schedulers

Developing an efficient scheduler is a daunting task, with various skills needed:
Knowledge of scheduling
Knowledge of the underlying hardware
Knowledge of application requirements
Low-level programming skills

We need to ease this process
if we want new schedulers to be created!
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The Ipanema Tool Chain

We propose Ipanema, a Domain Specific Language
for multi-core schedulers.

The compiler takes Ipanema source code and
outputs two targets:

a C kernel module usable in Linux,
a WhyML proof used to formally verify
scheduling properties.
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Overview of the Ipanema DSL

The Ipanema DSL abstracts multi-core scheduling for developers.

Two main features:
scheduling, based on the Bossa DSL that targets single core machines [1]
load balancing to even the load between cores: (needs to be done!)

How do we account for the hardware topology?

SMT: sharing computing hardware
LLC: sharing cache
NUMA: memory access times may not be uniform

We need a hierarchical load balancer!
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Load Balancing in Ipanema

Balancing is abstracted into 3 phases, most of the code is generated by the compiler.

P
H

A
S

E
 1

steal_for(dst):
       stealable_cores = {}
       foreach c in all_cores
               if can_steal_core(c, dst)
                       stealable_cores.add(c)

Phase 1: Finding stealable cores (lockless).
can_steal_core() is user-defined

Phase 2: Selecting the target core (lockless)
select_core() and stop_steal
are user-defined

Phase 3: Stealing threads from target (with locks)
steal_thread() and stop_steal_core
are user-defined

Minimal locking for performance and
easy to reason on for formal verification
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The Ipanema Language

Easy to learn C-like syntax, 7 handlers to write (thread transitions) + balancing.
On unblock {
core c = first(active_cores order = { lowest nr_tasks } );
e.target => c.ready;

}

Ipanema policies are:
small in Ipanema
smaller than CFS in generated C code
standard library with data structures and
helpers (SaaKM: 1,527 lines of code)

Policy Ipanema C

CFS (vanilla, baseline) 5,712

CFS-CWC 360 1,006
CFS-CWC-FLAT 242 791
ULE 272 851
ULE-CWC 245 898
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The Ipanema Runtime System

The Ipanema compiler takes Ipanema
policies and compiles them into a C kernel
module.

This module is inserted in a modified Linux
kernel featuring SaaKM, the Scheduler as a
Kernel Module interface.

Ipanema

compiler

Ipanema policy

Front-end
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Scheduling Class VS SaaKM

Linux scheduling class API
7 Designed with CFS in mind
→ no genericity

7 Schedulers are built-in the kernel binary
→ hard to distribute 1,000s of schedulers
→ statically enabled

7 Poorly documented and specified
→ hard to use

Scheduler as a Kernel Module (SaaKM)
4 Mirrors basic scheduling concepts
→ close to Ipanema events

4 Scheduler modules can be distributed
separately

4 Modules can be loaded and unloaded
dynamically

4 Clear specification
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The Property Verification System

The Ipanema compiler takes Ipanema
policies and also compiles them into WhyML
code. This code is used with proof skeletons
and passed to the Why3 program verification
platform.

We verify concurrent work conservation
(CWC), a weaker property than work
conservation that does not require excessive
locking.

Ipanema

compiler

Ipanema policy

Front-end

Event interface

C kernel module

C

Linux kernel

SaaKM API

This work is the result of collaborations.
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Evaluating the Ipanema System

Experimental setup:
Intel Xeon E7-8870 v4 (4 sockets, 160 cores with SMT enabled)
512 GiB of RAM
OS: Debian Buster
Kernel: Linux 4.19 with the SaaKM interface
Applications: NAS benchmark, kernel build, OLTP with MySQL and MongoDB

Scheduling policies:
CFS: vanilla 4.19 scheduler, used as a baseline
CFS-CWC: simplified and work-conserving version of CFS written in Ipanema
CFS-CWC-FLAT: same as CFS-CWC with a flat topology
ULE and ULE-CWC: simplified versions of the FreeBSD scheduler written in Ipanema
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Evaluating the Ipanema System: Kernel Build and Database
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Ipanema policies are on par with CFS on these applications.
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Evaluating the Ipanema System: the NAS Benchmark
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Axis 1: Contributions

Scheduler Development

1 Ipanema DSL
Abstracts scheduling concepts
Easy development, no low-level C code skills required
Allows the production of small efficient schedulers

2 SaaKM interface
Easy to use event-based interface
Scheduler hot plugging
Syscall and cgroup user interfaces

3 Property verification (collaboration)
The Ipanema DSL is tailored to help produce WhyML proofs
Proof of work conservation as an example

Perspectives
Extend the standard library (new data structures)
Enable the development of meta-schedulers
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Axis 2

Performance Enhancement



Dynamic Frequency Scaling

CPU0

CPU3

CPU1

CPU2

GHz GHz

GHz GHz

The frequency of a CPU:
depends on the load
is managed at the chip level
⇒ the load of one core impacts the frequency

of all cores on the chip

When all CPUs are fully loaded, nominal
frequency is guaranteed.
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The frequency of a CPU:
depends on the load
is managed at the chip level
⇒ the load of one core impacts the frequency
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Dynamic Frequency Scaling on Modern Processors

CPU0

CPU3

CPU1

CPU2

GHz GHz

GHz GHz

On modern chips, frequency is managed per core:
Intel Cascade Lake (2019)
AMD Ryzen (2019)

Each core sets its frequency to match its load.
Idle cores run at the minimal frequency while
busy cores use higher frequencies.

⇒ Energy savings

Turbo mode: when some cores not active, busy
cores can use even higher frequencies
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Frequency and Scheduling

Change the frequency to match the load
Linux scaling governors (ondemand, schedutil)
hardware frequency scaling (e.g. Intel HWP)

Frequency scaling used to
maximize the instructions per joule metric (Weiser’94 [2])
reduce contention on shared hardware (Merkel’10 [3], Zhang’10 [4])
reduce energy usage (Bianchini’03 [5])

Recent work by the Linux scheduler community
TurboSched: placing small jitter tasks on Turbo cores
support for heterogeneous architectures (ARM big.LITTLE, Intel Hybrid)
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Case Study: Compiling the Linux Scheduler

We develop high-resolution monitoring tools for the scheduler. Example: frequency.

1.2 GHz (1.2, 1.7] GHz (1.7, 2.1] GHz (2.1, 2.6] GHz (2.6, 3.0] GHz
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We develop high-resolution monitoring tools for the scheduler. Example: frequency.
1.2 GHz (1.2, 1.7] GHz (1.7, 2.1] GHz (2.1, 2.6] GHz (2.6, 3.0] GHz

Few cores running
but no Turbo!

Most cores are used,
but frequency is lower than nominal!
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Case Study: Zooming in the Trace

Busy at low frequency
Idle at high frequency

Frequency scaling is
too late to be effective!

Busy, low frequency
Idle, high frequency

Better suited cores are
available!

Frequencies

Idle
Busy
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Frequency Transition Latency
We develop a tool to measure the Frequency Transition Latency (FTL):

Latency between a change of load and the corresponding change of frequency.

Infinite loop on a single core,
from idleness to 100% load, resp.
from min to max frequency.

0% → 100% : 29 ms
100% → 0% : 98 ms

Changing frequency is not
instantaneous!

current base min maxFrequency:

start endWorkload:

29 ms

98 ms
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CFS and the Fork/Wait Pattern

CFS tries to be work conserving
→ new and waking threads are placed

on idle cores if available

In our case study, we have a repeated
fork/wait pattern.

A sequential workload uses
multiple CPUs!

C0 C1 C2 C3
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Problem: Frequency Inversion

Long FTLs

Frequencies

Idle
Busy

+

Work conserving scheduler

C0 C1 C2 C3

fork

fork
wait

fork
wait

wait

=

The frequencies at which two cores operate are inverted as
compared to their load
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Solution: Delayed Thread Migration

We propose Smove: delaying thread migrations on fork/wakeup.

Parent thread runs on C0, calls the fork()
syscall. CFS decides to place child thread on C1.

If C1 runs at a low frequency, instead of placing
the child thread on C1, we arm a timer that
expires in 50 µs and place the child thread on C0.

When the timer is triggered 50 µs later, we
migrate the child thread to C1.

We only lose 50 µs compared to CFS.
Without the timer, periodic load balancing would
have fixed this situation in tens of milliseconds.

C0 C1
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Solution: Delayed Thread Migration (2)

We propose Smove: delaying thread migrations on fork/wakeup.

Parent thread runs on C0, calls the fork()
syscall. CFS decides to place child thread on C1.

If C1 runs at a low frequency, instead of placing
the child thread on C1, we arm a timer that
expires in 50 µs and place the child thread on C0.

Parent thread calls the wait syscall, the child
thread is scheduled on C0, the timer is canceled.

The sequential program uses a single core, running
at a high frequency and C1 stays idle.

C0 C1

fork()
50 µs
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Solution: Delayed Thread Migration Evaluation
C
F
S
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23% faster than CFS
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Performance and Energy Evaluation

Hardware:
Server: 80-core Intel Xeon E7-8870 v4 (160 HW threads)
Desktop: 4-core AMD Ryzen 5 3400G (8 HW threads)

Benchmarks: 60 applications from
NAS: HPC applications
Phoronix: web servers, compilations, DNN libs, compression, databases, . . .
hackbench and sysbench OLTP

Frequency scaling governors:
powersave
schedutil
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Performance and Energy Evaluation (2)

Compared to CFS, server machine, powersave governor, higher is better

Smove
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Performance and Energy Evaluation (2)

Compared to CFS, server machine, powersave governor, higher is better

Smove
21 apps outperform CFS

3 apps deteriorated

Overall, better energy-wise
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Axis 2: Contributions

Performance Enhancement

1 Monitoring tools for the scheduler subsystem

2 Discovery of the frequency inversion problem
Long FTLs + work conserving scheduler
New problem with per-core dynamic frequency scaling

3 Two solutions implemented in Linux
Slocal : simple, aggressive, relies on load balancing
Smove : frequency-aware, efficient. Submitted to the Linux kernel community

Perspectives
Fully frequency-aware scheduler
Modeling the frequency behavior of CPUs (active cores, temperature, instruction set, . . . )
Shortening the FTL with faster reconfiguration (hardware, scaling governor)
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Axis 3

Application-Specific Schedulers



Fifty Shades of Scheduling

Scheduling comes in various flavors:
fair (CFS, ULE)
enforce real-time deadlines (EDF)
optimize data locality
reduce contention on caches, memory, disks, . . .
and so on . . .
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One Scheduler Cannot Rule Them All . . .

Existing studies show varying levels of performance depending on the application.

blog posts from users (e.g. PostgreSQL)
comparisons from the benchmarking
community (e.g. Phoronix)
academic results [Bouron’18]

There is no silver bullet in
scheduling!
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Building Application-Specific Schedulers

Could we leverage Ipanema and SaaKM to write
application-specific schedulers?

We propose the following approach:
Develop a feature-oriented model of schedulers
Implement a library of features to build modular schedulers
Propose an evaluation methodology for these produced schedulers
Develop techniques to automatically build the best application-specific scheduler
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Scheduler Feature Model

Model

CFS

ULE

Alternative

Optional

Mandatory

Variable feature

Fixed feature

Scheduler

Election Time slice

Dispatcher

Timing

Choice of src/dst
Event

Load metric

Idle

Executor

Placement distance

Period

new/unblockImbalance formula

nrRun nrRunBlock usedTime

SMT LLC all

all node core

Infinite Fixed Split

RBtree Linked list

FIFOvruntime

Implementation

Implemented as a kernel library.

SaaKM compliant.

Features are independent from each other.

16 features in current model
→ 486 combinations can be generated.
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Experimental Setup

Hardware:
CPU: Intel Xeon E5645 (12 cores, 24 HW threads, 2 sockets)
RAM: 64 GiB
OS: Debian 8 with Linux 4.19 kernel

Applications:
7 PARSEC applications
7 Phoronix applications
2 HiBench applications
3 sysbench applications
hackbench from the Linux Test Project

Each application is run 10 times with
each scheduler

Total experiment time of 1,925 hours,
distributed on 8 identical machines
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Feature Evaluation: the facesim Example
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Initial state: (facesim application)
10 runs × 486 schedulers = 4,860 points
CFS as a baseline, in the background.

Reducing data:
1 Discard unstable schedulers (stddev)
2 Reduce to mean value

Finding the best:
Isolate the schedulers at most 10% from
the best one
⇒ Set of Best schedulers
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Preliminary Results

Raw results confirm the value of building application-specific schedulers:

Out of 20 applications:
For 17 applications (85%), we build simple schedulers on par with CFS
For 7 applications (35%), we build simple schedulers better than CFS

In terms of stability, CFS is less stable than most generated schedulers on 5 applications.
⇒ 1 scheduler (CFS) is not a baseline to determine if an application is stable or not.
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Finding the Best Application-Specific Scheduler

Brute-force approach: Run all generated schedulers and keep the best one.
+ Gives the best scheduler for the application
− Impractical (for 10 runs and 486 schedulers, 1,925 hours for all tested applications)
− Does not scale realistically with the number of features and applications

We need a more practical way of finding
the best scheduler for an application!

The new approach should:
Find a good scheduler without testing all schedulers
Be able to use one application’s results for other applications
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Performance-Driven Feature Search

We propose the following framework:

Application
profiles

Feature
impact

ML
thingy

ApplicationProfiling

Scheduler

Execution

We already have:
Execution framework: SaaKM
Scheduler generator: library of features
Profiling: stats from procfs + ftrace

What we still need:
ML algorithm: match scheduler to
application
Inputs for ML: features’ impact on
applications
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Feature Evaluation: the facesim Example

Remain Best
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Isolating Features

Count the occurrences of each feature in Best:
> 80%⇒ good, < 20%⇒ bad

FitBest: schedulers with all good features
and no bad ones in Best.

Fit: schedulers with all good features
and no bad ones not in Best.

{ idle = yes
Load metric 6= nrRunBlock
Placement distance 6= SMT }
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Conclusion

We isolate the best features for an
application.

Representativeness: R= |FitBest|
|Best| =76%

Precision, i.e. false positives: P= |FitBest|
|Fit∪FitBest| =99%

We reduce the noise in experimental data
and pave the way for ML-based

approaches.
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Performance-Driven Feature Search

We propose the following framework:

Application
profiles

Feature
impact

ML
thingy

ApplicationProfiling

Scheduler

ExecutionExecution

Scheduler

Application
profiles

ApplicationProfiling

ML
thingy

Feature
impact

We already have:
Execution framework: SaaKM
Scheduler generator: library of features
Profiling: stats from procfs + ftrace

Inputs for ML: features’ impact on
applications

We now can:
ML algorithm: match scheduler to
application
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Axis 3: Contributions

Application-Specific Schedulers

1 A feature model representing schedulers as independent features
Implemented as a library such that features can be evaluated independently
16 features, 486 generated schedulers in its current state, complies with SaaKM

2 An ML-based approach to build application-specific schedulers
Application profiling
Feature impact analysis

3 A methodology to understand the impact of each feature
Evaluate the stability of applications and schedulers
Build the set of desirable features for a given application

Perspectives
Expand the model with new features
Implement our ML engine to automatically build application-specific schedulers
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Conclusion



Contribution Summary

How can we help developers implement efficient schedulers in a safe and easy way?
How can we help users get the best performance for their applications?

Axis 1
Scheduler Development

Ipanema DSL
SaaKM API

Property verification

Axis 2
Performance Enhancement

High-resolution monitoring tools
Frequency inversion problem

Smove solution submitted

Axis 3
Application-Specific Schedulers

Feature model
Feature evaluation methodology
ML-based scheduler building

approach
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Long Term Perspectives

Axes 1 and 2:
Extend the Ipanema standard library with more hardware features (e.g. frequency)

Axes 1 and 3:
Extend the Ipanema standard library and the feature model to better account for other
resources such as memory, disks, network, etc . . .

Axes 2 and 3:
Expand feature model with more hardware-specific features (frequency, heterogeneity, . . . )
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Contribution Summary

How can we help developers implement efficient schedulers in a safe and easy way?
How can we help users get the best performance for their applications?

Axis 1
Scheduler Development

Ipanema DSL
SaaKM API

Property verification

Axis 2
Performance Enhancement

High-resolution monitoring tools
Frequency inversion problem

Smove solution submitted

Axis 3
Application-Specific Schedulers

Feature model
Feature evaluation methodology
ML-based scheduler building

approach
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Feature Evaluation: the facesim Example

Election RBtree Linked list FIFO
44 (31.43%) 48 (34.29%) 48 (34.29%)

Time slice Infinite Fixed Split
47 (33.57%) 46 (32.86%) 47 (33.57%)

Load metric nrRun nrRunBlock usedTime
54 (38.57%) 33 (23.57%) 53 (37.86%)

Placement distance SMT LLC all
33 (23.57%) 54 (38.57%) 53 (37.86%)

Executor all node core
36 (25.71%) 51 (36.43%) 53 (37.86%)

Idle no yes
16 (11.43%) 124 (88.57%)

Phase 3: Isolating the best features

Count the occurrences of each feature in Best.

If feature is > 80%⇒ good
If feature is < 20%⇒ bad

We call this set of features a scheduler frame.
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