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Abstract
Recent research and bug reports have shown that work con-

servation, the property that a core is idle only if no other core

is overloaded, is not guaranteed by Linux’s CFS or FreeBSD’s

ULE multicore schedulers. Indeed, multicore schedulers are

challenging to specify and verify: they must operate under

stringent performance requirements, while handling very

large numbers of concurrent operations on threads. As a

consequence, the verification of correctness properties of

schedulers has not yet been considered.

In this paper, we propose an approach, based on a domain-

specific language and theorem provers, for developing sched-

ulers with provable properties. We introduce the notion of

concurrent work conservation (CWC), a relaxed definition

of work conservation that can be achieved in a concurrent

system where threads can be created, unblocked and blocked

concurrently with other scheduling events. We implement

several scheduling policies, inspired by CFS and ULE. We

show that our schedulers obtain the same level of perfor-

mance as production schedulers, while concurrent work con-

servation is satisfied.

CCS Concepts: • Software and its engineering → For-
mal software verification.
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1 Introduction
An OS-kernel thread scheduler

1
decides which thread runs

at a given moment on a given core. A scheduler is a key

OS service since any bad decision that it makes may lead to

cores wasting cycles and may increase application response

times [36]. Recent work has revealed bugs related to the viola-

tion of the work conservation property (no core remains idle

when work is ready to be scheduled) in Linux’s CFS sched-

uler [36], as well as a bug in recent versions of FreeBSD’s ULE

scheduler [6]. Indeed, developing a production scheduler is

very challenging. A scheduler must operate under stringent

performance constraints [28], support concurrency, adapt to

complex hardware features, such as NUMA, and address not

only scheduling of the threads on individual cores but also

balancing the load across cores. As a result, while schedulers

were services of a few hundred lines of code twenty years

ago when machines were single core, they have grown into

highly complex pieces of software in the era of multicore

NUMA machines. The Linux kernel kernel/sched direc-

tory and associated scheduler header files contain more than

23,000 lines of code in Linux 4.19 (October 2018). The file

fair.c, containing the code specific to the CFS scheduler,

amounts to over 5,500 lines of code.

1
We use thread to refer to a unit of scheduling, i.e., either a lightweight

thread or a single-threaded process. In Linux, the term task is used for this.

https://doi.org/10.1145/3342195.3387544
https://doi.org/10.1145/3342195.3387544
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The conventional wisdom is that abnormal OS behavior

can only be found by testing. Unfortunately, testing may

miss scheduling issues, because schedulers are very sensi-

tive to specific workloads and machine configurations. In

fact, one of the Linux work conservation bugs remained un-

detected for more than 5 years and the ULE bug remained

undetected for 2.5 years. It has been reported that Google

incurred performance issues due to the scheduler on 25% of

its disk servers [50]. These issues remained unnoticed for 3

years and cost millions of dollars. Furthermore, as part of

this work we have found a new work conservation issue in

CFS that occurs when unblocking a thread.

Recent work on seL4 [29] and CertiKOS [24] has opened

an alternative to testing, showing that it is possible to prove

an OS formally correct at design time. However, these ap-

proaches are made tractable by constrained concurrency

models. SeL4 forbids concurrency in the kernel, while Cer-

tiKOS requires all accesses to shared variables, including

reads, to be performed in critical sections. These constraints,

however, do not match the requirements of a production

multicore scheduler. Indeed, for performance and scalabil-

ity, CFS is fully concurrent and allows cores to observe the

instantaneous state of other cores without locks held, even

if doing so may lead to decisions based on outdated values.

Taking locks in order to read a consistent core state would

severely degrade the performance of the whole system.

In this paper, we define a methodology for developing con-

current multicore schedulers that can be proved work con-

serving. Using our methodology, we have developed work-

conserving schedulers that are inspired by those of Linux

and FreeBSD. Our goal is to offer the same performance as

production schedulers with the additional guarantee that

cores are never wasted. There are several challenges in prov-

ing work conservation that require advances beyond the

state of the art in proving OS code. First, we want to fo-

cus on proving properties of the scheduling algorithm itself,

while still verifying source code that can be used in a real

OS. Second, we want to reduce the proving effort required as

compared to when starting from a low-level language such

as C in which abstractions are hidden in low-level optimized

code. Third, we need a concurrency model that allows a high

degree of parallelism between scheduling events, and allows

reasoning about work conservation properties of a scheduler

while allowing threads to be concurrently created, blocked,

unblocked or terminated.

To address the above challenges, we first propose a novel

approach based on the identification of key scheduling ab-

stractions and the realization of these abstractions as a

Domain-Specific Language (DSL), Ipanema. While DSLs are

typically proposed to facilitate programming in a particular

domain [39], this aspect is secondary in our work. Instead,

we rely on the fact that our scheduling abstractions have a

clean semantics that is enforced by the DSL design and the

DSL compiler. Expressing a scheduling policy in terms of

Event interface

C kernel module WhyML code Proof library

ProofsLinux kernel

Abstraction library

Ipanema policy

Ipanema

compiler

Why3

Frontend

C WhyML

Figure 1. Ipanema overview: compilation to execution

these abstractions, via the Ipanema DSL, then implies that

we can assemble the properties guaranteed by the abstrac-

tions into proofs of properties of the complete scheduling

algorithm. Second, we define a “non-synchronized read” con-

currency model that relies on the mutually exclusive exe-

cution of scheduling events locally on a core, but that still

permits reading the state of other cores without requiring

locks. Third, we show that work conservation cannot be en-

sured in a system where threads can be created, unblocked,

blocked, or terminated concurrently with the execution of

load balancing. We introduce concurrent work conservation
(CWC), a property that is provable even in a concurrent sys-

tem, under our “non-synchronized read” concurrency model.

We find that an Ipanema CWC CFS-like scheduler is able to

achieve the same performance as the original CFS scheduler.

Figure 1 gives an overview of our approach. First, the

scheduler developer implements a policy using the Ipanema

DSL. This policy is then subjected to two compiler backends:

one generating efficient C code for execution as a Linux ker-

nel module, and another generating code in WhyML, the

ML-like imperative language supported by the state-of-the-

art Why3 program verification platform [5]. The imperative

features of WhyML allow a line-by-line correspondence be-

tween the WhyML code and the C code in the Linux kernel

module. The C code is linked with a small library implement-

ing our scheduling abstractions, while the WhyML code is

used with Why3 to prove that the algorithm represented by

the scheduling policy is CWC. The DSL enforces restrictions

on the code structure to facilitate the proof of this property.

Our DSL approach is inspired in part by Cogent [1], which

targets filesystem development, and aims at simplifying the

proving effort by generating part of the proof from the source

code. We go one step further since our proofs exploit the

domain-specific abstractions used in the scheduling code.

The contributions of this paper are:

• A methodology to ease the proving effort of CWC

thanks to our scheduling abstractions and the Ipanema

DSL.
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• A methodology and compiler support to construct

CWC proofs in the presence of unprotected read ac-

cesses to shared variables.

• A complete tool chain for compiling an Ipanema sched-

uling policy as a Linux 4.19 kernel module.

• Proved CWC ULE-like and CFS-like policies written

in Ipanema.

• Identification of a new work conservation issue in CFS

during thread unblocking that impacts highly parallel

applications such as NAS.

• An evaluation of the performance of Ipanema on a set

of established Linux scheduling benchmarks and on

applications that stress the scheduler. On a large mul-

ticore machine with 160 hardware threads, we show

that (i) the Ipanema scheduler improves performance

on the NAS parallel benchmarks by up to 36% over

Linux CFS because it achieves CWC and CFS does

not, and (ii) on other workloads for which CFS does

not exhibit any work-conservation issues, Ipanema

schedulers perform similarly to CFS.

The rest of this paper is organized as follows. Section 2

presents issues in proving work conservation and introduces

concurrent work conservation. Section 3 presents our sched-

uling abstractions and the DSL. Section 4 presents the proof

techniques. Section 5 evaluates the performance of Ipanema

schedulers. Section 6 presents related work, and Section 7

concludes.

2 Work Conservation
To optimize the utilization of resources, production sched-

ulers for general-purpose multicore systems try to even the

load across cores. In particular, schedulers try to assign newly

runnable threads to the least loaded cores and perform load

balancing, periodically and when a core becomes idle. Work
conservation is the property that after such scheduling events,
if a core on the machine is overloaded, then no core is idle.

We first describe some work-conservation bugs that have

recently been identified in CFS and ULE. Then, we formally

define work conservation and describe the challenges in im-

plementing and proving a work-conserving scheduler in the

context of a fully concurrent system. Finally, we introduce

the concurrent work conservation property that addresses

the concurrency challenges.

2.1 Work-conservation bugs
In a EuroSys 2016 study, Lozi et al. [36] showed four bugs

in CFS that broke work conservation. CFS is a concurrent

scheduler, and takes into account the NUMA hierarchy of

the machine. Each level of the hierarchy defines a set of

scheduling domains that share a common architecture fea-

ture (NUMA node, cache level). Each scheduling domain

contains a set of groups of cores that are the scheduling do-

mains for the next level below. Load balancing is carried out

within a given scheduling domain. To minimize overhead,

CFS frequently runs load balancing between cores on the

same NUMA node, but only infrequently runs load balanc-

ing between cores located on different NUMA nodes. CFS

also limits thread placement on thread creation or unblock to

cores within a NUMA node. These optimizations contributed

to the identified bugs.

The first bug stemmed from the fact that CFS only looks at

the average loads of scheduling domains when performing

load balancing instead of looking at the load of individual

cores. CFS might consider that a NUMA node has a high

load because it runs a high priority thread, even if most of its

cores are idle. This bug caused a 13× slowdown on the NAS

LU HPC benchmark. While the bug has recently been fixed,

it had been present in the scheduler for more than five years

(since Linux 2.6.37) when the study was published. Two other

bugs were also caused by algorithmic and implementation

errors, and had existed for 2-3 years (since Linux 3.9 and

3.18, respectively). The fourth bug was caused by the fact

that periodic load balancing mistakenly moved long-running

threads across nodes because of transient threads that hap-

pened to be scheduled at the moment the load balancer ran.

The resulting overloading caused threads to block to wait

for slower ones, hiding the node overload. To favor locality

CFS does not migrate threads to idle cores on other nodes

on an unblock, thus leaving the node in an overloaded state.

To our knowledge, this bug has not been fixed at the time of

writing and has been present since at least 2009.

As for ULE, a bug report in Dec. 2017 [6] showed that

since the version released in Feb. 2015, no periodic load

balancing was performed. The load balancing function was

called by the kernel, but returned before doing any useful

work because a variable was incorrectly initialized.

While the aim of Ipanema is not to find bugs in existing

schedulers, but rather to present a way to produce correct

schedulers, we found a work conservation issue in the pro-

cess creation code of CFSwhen reimplementing it in Ipanema

(Section 4.3).

These issues suggest that OS testing is not sufficient to

find work conservation bugs, which can exist for a long time.

Indeed, such bugs affect performance but do not cause a crash.

Still, the consequences are important since the infrastructure

is under-used, energy is wasted to power idle hardware, and

users may observe a degraded response time.

2.2 Definitions
Multicore schedulers assign threads to cores as part of sched-

uling events. Events may place a single thread on a chosen

core, as in the case of an unblock or new event, or may re-place

any of the threads in the system, as is the case of a load

balancing event. For unblock or new, we are concerned with

whether the chosen core becomes overloaded, and we refer

to the property as local work conservation (LWC). For load

balancing, we are concerned with whether any core on the
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system becomes overloaded, and we refer to the property

as global work conservation (GWC). We now define these

properties more formally.

We say that a thread is runnable when it is scheduled

or waiting to be scheduled. A core c is idle when it has no

runnable threads, and overloaded when it has more than one

runnable thread. Local and global work conservation are

then defined as follows:

Definition 1 (Work Conservation (LWC, GWC)). For a

given scheduling event, for any core c , let O(c) hold iff core

c is overloaded at the end of the scheduling event, and let

I (c) hold iff core c is idle at the end of the scheduling event.

Then, a scheduling policy’s implementation of the schedul-

ing event is local work conserving for some core c iff at the

end of the scheduling event:

O(c) =⇒ (∀c ′.¬I (c ′))

and is global work conserving iff at the end of the scheduling

event:

(∃c .O(c)) =⇒ (∀c ′.¬I (c ′))

2.3 Concurrent Work Conservation
In a fully concurrent scheduler such as CFS, work conser-

vation may be impossible to achieve. Indeed, concurrent

executions of the scheduler may cause a core to become idle

or overloaded, and therefore make it impossible to achieve

or prove WC as defined in the previous section. For instance,

a core that is not overloaded when it is observed by a sched-

uling event may become overloaded before the end of the

scheduling event due to a concurrent unblock or new. Likewise,

in the case of load balancing, a thread selected for migration

may block or terminate before the migration is performed.

As the threads to migrate must be runnable, such a block

or terminate may leave no thread available to migrate. Af-

ter a scheduling event has observed a core, or even after

it has placed threads on the core, all of the threads on the

core can subsequently block or terminate, leaving the core

idle. Finally, a concurrent schedule or yield event that may

reposition a thread in the runqueue may also cause a core

to appear to be idle (empty runqueue) if the reposition op-

eration overlaps with the end of load balancing. We now

introduce revised definitions of idle and overloaded that ac-

count for the occurrence of concurrent scheduling events.

We then use these new definitions to craft a definition of

work conservation that is achievable and provable.

Definition 2 (Concurrent Overloaded (CO) and Concurrent

Idle (CI)). For a given scheduling event, for any core c , let I (c)
hold iff c is idle at the end of the scheduling event. Let O(c)
hold iff c is overloaded at the end of the scheduling event. Let
B(c) hold iff a thread block or terminate event that removes a

thread from c overlaps with the scheduling event. LetU (c)
hold iff a thread unblock or new event that places a thread on

c overlaps with the scheduling event, or, in the case of load

balancing, if a thread is stolen for c from a core c ′ such that

U (c ′) (intuitively, in that situation we setU (c) because the
stolen thread might be the thread that was unblocked). Let

E(c) hold iff another scheduling event is in progress on core

c at the end of the scheduling event. Then, for any core c ,

CO(c) ≡ O(c) ∧ ¬U (c)
CI(c) ≡ I (c) ∧ ¬B(c) ∧ ¬E(c)

We then propose the property of Concurrent Work Conserva-
tion:

Definition 3 (Concurrent Work Conservation (LCWC,

GCWC)). A scheduling policy’s implementation of a sched-

uling event is local concurrent work conserving for some core

c iff at the end of the scheduling event:

CO(c) =⇒ (∀c ′.¬CI(c ′))

and is global concurrent work conserving iff at the end of the

scheduling event:

(∃c .CO(c)) =⇒ (∀c ′.¬CI(c ′))

In summary, CWC adapts WC by removing from consid-

eration cores that may become idle or overloaded due to

scheduling events unrelated to load balancing.

2.4 Hierarchical Concurrent Work Conservation
As described in Section 2.1, to reduce the cost of load balanc-

ing, CFS does not balance the load across the entire machine

at every balancing operation, but rather periodically bal-

ances each domain in the hierarchy at different intervals. To

capture this behavior, we provide a definition of hierarchi-

cal concurrent work conservation that reasons about each

domain individually. Each group in a domain may comprise

one or more cores. We generalize Definition 3 as follows:

Definition 4 (Hierarchical Concurrent Work Conservation

(HCWC)). Let k be the number of cores in a group д. Let
Ok (д) hold iff д has more than k threads at the end of load

balancing. Let Ik (д) hold iff д has fewer than k threads at the

end of load balancing. Let Bk ,Uk , and Ek be defined like B,
U , and E, but generalized from cores to groups. For example,

Bk (д) holds iff a thread block or terminate operation on any

core in д overlaps with load balancing. Then, for a group д
of k cores:

COk (д) ≡ Ok (д) ∧ ¬Uk (д)
CIk (д) ≡ Ik (д) ∧ ¬Bk (д) ∧ ¬Ek (д)

and a load balancer is hierarchical concurrent work conserving
iff at the end of load balancing:

(∃д.COk (д)) =⇒ (∀д′.¬CIk (д′))

3 The Ipanema DSL
To achieve CWC, a scheduler’s load balancer and its thread

placement strategy for unblock/new must search for idle cores

across the machine. To avoid blocking the machine, which
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would incur a high performance overhead, the state of other

cores should be observed without taking locks, even though

doing so may result in slightly inaccurate thread placement

decisions. Linux’s CFS is indeed based on such a “non-synch-

ronized read” concurrency model to provide performance

and scalability on large multicore machines.

Proving CWC with such non-synchronized reads requires

enforcing constraints on the scheduler code to limit the kinds

of inconsistencies and out-of-date information that may

impact thread placement decisions. To address this issue,

we propose to express a scheduling policy using a Domain-

Specific Language (DSL). A DSL traditionally provides ab-

stractions appropriate to a particular domain to make pro-

gramming in the domain easier or more robust for domain

experts [38, 39]. In our setting, however, the DSL makes it

possible to introduce constraints on the structure of the code

that make desired properties easier to verify and enforce.

In particular, our DSL limits access to shared data struc-

tures in such a way as to make it possible to generate proof

obligations that respect the concurrency semantics while

incorporating sufficient invariants to make CWC provable

on a range of scheduling policies.

In the rest of this section, we present our DSL, Ipanema,

in terms of its main abstractions, its syntax, and its expres-

siveness. Ipanema captures the hierarchical load balancing

algorithm of CFS, which is themost complex one of whichwe

are aware and deals with cache affinity on NUMA machines.

Additionally, we have been able to reimplement policies sim-

ilar to ULE [7], lottery scheduling [53], and EDF [8].

3.1 Abstractions and concurrency
Themain objects relevant tomulticore scheduling are threads

and cores. Threads have a state, indicating whether they are

running, ready to run, blocked, or terminated. Ready threads

wait to run on a specific core, and are stored in that core’s run-

queue. Threads may also be associated with policy-specific

attributes, such as their expected load on the system or their

priority. Cores may likewise be associated with attributes

that summarize the attributes of the threads running or wait-

ing on them, such as the total load of these threads.

Threads are affected by a series of scheduling events, such

as the blocking of a running thread, the unblocking of a

thread that is waiting for a resource, the need to select a new

thread, and the balance of the load across cores. A schedul-

ing policy must provide handlers for these events. To ensure

the integrity of the scheduling state, at the core-local scope,

events are executed in mutual exclusion. At the machine

scope, Ipanema allows a core to observe the state of another

core at any time. Not enforcing any synchronization on reads

improves performance, but implies that the observed core

can be in the middle of updating its state, potentially expos-

ing inconsistent information.

To ensure the mutual exclusion of events at the core-local

scope, a lock is associated with each core. We refer to this

lock as the core lock. To reduce the set of properties that have
to be proved, as well as easing the task of the policy designer,

the Ipanema DSL does not provide any constructs for manip-

ulating these locks. Instead, all locking actions are generated

by the Ipanema compiler. To enable the reasoning needed

to prove CWC, Ipanema puts substantial restrictions on the

variables that can be observed during thread placement with-

out holding the associated core lock. Such observations may

only be performed by handlers of designated events: load

balancing, thread unblock, and thread creation. Only four

Ipanema-defined variables can be observed from another

core without holding specific locks: the core attribute cload,

which is the sum of the loads of the runnable threads on a

given core, a core-specific counter of the number of runnable

threads on a given core that is accessible via the function

count, and the global variables idle_cores and active_cores,

which contain the set of idle and non-idle cores in the sys-

tem, respectively. Finally, the first two variables cannot be

explicitly modified by the policy, but instead are updated by

code inserted by the Ipanema compiler into the middle of

the thread state transitions that impact their values. These

restrictions ensure that it is possible to define invariants that

describe the possible relationships between the observed

values and the actual scheduling state, e.g., the relationship
between the value of a core’s cload variable and the actual

number of runnable threads on the given core. We assume

a weak memory model similar to that of ARM [14]: reads

and writes can be reordered by the underlying C compiler

or by the processor, unless they are separated by a memory

barrier; these are added as needed by the Ipanema compiler.

Our assumptions would also hold on architectures with a

stricter memory model, such as Intel’s TSO.

Finally, for the purpose of placing lock operations, the

Ipanema compiler decomposes the event handlers for load

balancing, thread unblock, and thread creation into observing
and updating phases. Observing phases examine shared at-

tributes of other cores, but do not take the lock of those cores.

Updating phases modify variables that can be observed from

other cores. Such phases take the lock of the core associated

with the modified variable. Updating phases are kept as short

as possible to minimize the performance overhead.

3.2 Ipanema
Ipanema is based on a previous DSL, Bossa [40], which tar-

gets scheduling properties in a unicore environment. Bossa

provides abstractions for defining scheduling properties of

threads, thread states, and scheduling-event handlers. It does

not provide abstractions for thread placement on new or

unblock events, or for defining the load-balancing policy, as

these are specific to a multicore setting.

We present Ipanema using a CWC variant of FreeBSD’s

ULE scheduling policy (Listing 1). We first describe thread

and core definitions, and the scheduling-event handlers. We

then give an overview of the notation used to express the
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Listing 1 A CWC ULE-like scheduler

1 const int INTERRUPT = 1; const int REGULAR = 2;

2 const int INTERACTIVE = 4;

3 thread = { int load=1, prio, slice; core last_core; }
4 core = {

5 threads = {

6 shared RUNNING thread current;

7 shared READY set<thread> realtime:order = {highest prio};
8 shared READY set<thread> timeshare:order = {highest prio};
9 ...}

10 system shared int cload;
11 }

12 steal = {

13 can_steal_core(core src, core dst) {
14 src.cload − dst.cload >= 2

15 } => stealable_cores
16 do {

17 select_core() { first(stealable_cores order = {highest cload}) } => src
18 steal_thread(core dst, thread t) {

19 if (src.cload − dst.cload >= 2) {

20 if (t.prio == REGULAR) t => dst.timeshare;

21 else t => dst.realtime;

22 }

23 }

24 } until (runnable(dst) != 0)

25 }

26 handler (thread_event e) {
27 On tick {

28 e.target.slice−−;
29 if (e.target.slice <= 0) {

30 update_realtime(e.target);
31 if (t.prio == REGULAR) e.target => timeshare;

32 else e.target => realtime;

33 }

34 }

35 On yield { ... }

36 On block {

37 e.target => blocked;
38 }

39 On unblock {

40 thread t = e.target;
41 core idlest = choose_wakeup_core(e.target);
42 if (update_realtime(t)) t => idlest.realtime;

43 else t => idlest.timeshare;

44 }

45 On schedule {
46 thread t = first(realtime);

47 if (!valid(t)) t = first(timeshare);

48 t => current;

49 t.last_core = self;
50 t.slice = get_slice(t);

51 }

52 On new { ... } On detach { ... }

53 }

54 handler (core_event e) {
55 On synchronized balancing {

56 foreach (c in system_cores() order = {lowest cload}) {
57 steal_for(c);
58 } } }

59 void update_realtime(thread t) { ... }

60 int runnable(core c) { return count(c.realtime) + count(c.timeshare) + ...; }

61 int get_slice(thread t) { ... }

62 core choose_wakeup_core(thread t) {

63 /∗ Run interrupt threads on their core ∗/
64 if (t.prio == INTERRUPT) { return t.last_core; }

65 foreach (g in t.last_core.d.groups) { /∗ Pick an idle cpu that shares a L2 ∗/
66 if ((g.sharing_level & L2_CACHE) != 0) {

67 foreach (c in g.cores) { if (c.cload == 0) return c; }}}

68 return first(system_cores() order = { lowest cload }); /∗ Default ∗/
69 }

load-balancing policy and the associated support provided

by the runtime system. Finally, we present the support for

a scheduling domain hierarchy. A BNF describing the main

features of the language is shown in Appendix A.

Lines 1-3 declare thread attributes, comprising the thread

load (always 1 for ULE), the thread priority (INTERRUPT, IN-

TERACTIVE, or REGULAR for ULE), and the core on which

the thread was last run. Lines 4-9 declare core attributes,

including the thread states that are associated with the core

and cload, a measure of the load on the core. Thread states are

characterized by a state class: RUNNING for the state of the

thread that is running on the core, READY for the state of the

threads that are waiting in the core’s runqueue, BLOCKED

for the state of the threads that have blocked while running

on the core, and TERMINATED for the state of the threads

that have terminated while running on the core. The ULE

policy maintains two runqueues, realtime (line 7) for INTER-

RUPT and INTERACTIVE threads and timeshare (line 8) for

REGULAR threads. BLOCKED and TERMINATED states are

not represented by any data structure.

The remainder of the scheduling policy defines the han-

dlers for load balancing (lines 12-25 and 55-58) and the han-

dlers and associated functions for the scheduling events

(lines 26-53 and 59-69). The handlers are written in a C-

like syntax, with a specific operator => for making thread

state transitions, bounded loops, and a few other scheduling-

specific constructs that help ensure the validity of the sched-

uler code.

Event handlers. To illustrate the structure of event han-

dlers, we consider the ULE handlers for the block and unblock

events (lines 36-44 of Listing 1). The block handler consists of

a single DSL instruction that changes the state of the block-

ing thread e.target to blocked (the ULE state in the BLOCKED

state class). The unblock handler consists of a series of DSL

instructions that first select a new core (choose_wakeup_core

call, line 41) for the unblocking thread, and then add the

thread to the timeshare or realtime queue of the chosen core

according to the thread’s priority.

These simple specifications hide a more complex imple-

mentation. The state change shown in the block handler re-

quires removing the thread from the data structure associated

with its current state, updating any shared core attributes,

i.e., cload and the number of runnable threads on the core,

and changing the state of the thread to blocked. Unblocking

requires first observing the states of other cores to select a

new core (choose_wakeup_core, line 41), and then performing

a series of operations to change the state of the thread and

install it in the chosen runqueue of the chosen core. By plac-

ing the updates to the shared variables after removing the

thread from any data structure associated with its current

state and before adding it to any data structure associated

with its new state, the code generated by the Ipanema com-

piler respects the invariant that the shared variables always
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contain a value that overestimates the load on the core by at

most the load of a single thread. This property is essential

to reasoning about work conservation in the presence of

concurrent scheduling events, as described in Section 4.

Load balancing. Load balancing involves observing the

state of all of the cores of the system, to steal threads from

more loaded cores and allow them to run on less loaded

cores. The ULE-CWC load balancer tries to steal exactly

one thread for each core that has fewer threads than some

other core, whether or not the former core is idle. ULE-CWC,

like ULE itself, has a single load balancer than steals for all

of the cores on the machine. Indeed, all our CWC policies

allow only one core to perform load balancing for the entire

system, by initiating load balancing from the synchronized

balancing event handler (lines 55-58). This strategy prevents

one balancing core from stealing threads placed by another

concurrent balancing core.

For a given destination core, Ipanema abstracts the load

balancing strategy into three phases, triggered by a call to

steal_for(c) (line 57). The first phase, can_steal_core() (lines

13-15 of Listing 1), collects a list of stealable cores. The second

phase, select_core() (line 17), chooses a source core from

which threads may be stolen from the list of stealable cores

(if any). Finally, the third phase, steal_thread() (lines 18-23),

migrates one or more threads t from the source core chosen

by select_core() to the destination core.

Figure 2 shows the structure of the code generated by the

Ipanema compiler from the three phases. can_steal_core()

and select_core() are observing since they examine shared

attributes of other cores. steal_thread() is updating, as it re-

moves and adds threads in the runqueues of other cores. To

minimize the performance overhead, the Ipanema compiler

structures the code generated for steal_thread() such that all

threads are removed from the selected core first, while hold-

ing only the lock of the selected core, and then all removed

threads are moved to the destination core, while holding

only the destination core’s lock. As select_core() is executed

without holding any other core’s lock, the core it selects may

no longer have stealable threads by the time of reaching

steal_thread(). Our CWC policies perform the second and

third phases in a loop (lines 16 and 24), so that balancing only

fails if none of the cores identified by can_steal_core() has

any threads to offer. Such a loop continues until the specified

condition is satisfied (here, dst is not idle) or select_core()

has considered all of the cores selected by can_steal_core().

The expression of the load balancing policy in terms of the

three phases allows the compiler to generate the optimized

locking code found in Phase 3. It also factorizes the proof

effort, as shown in Section 4, because the proof of the code

shown in Figure 2 can be reused for all policies.

Scheduling domain hierarchy. The Linux kernel sup-

ports the collection of cores into scheduling domains [46],
that are typically defined according to the properties of the
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steal_for(dst):
       stealable_cores = {}
       foreach c in all_cores
               if can_steal_core(c, dst)
                       stealable_cores.add(c)
       while !empty(stealable_cores) && !stop_steal
               src = select_core(stealable_cores)
               stealable_cores.del(src)
               tmp_rq = {}
               foreach t in src.runqueue
                       if steal_thread(t, src, dst)
                            src.runqueue.del(t)
                               tmp_rq.add(t)
                       if stop_steal_core
                               break
               foreach t in tmp_rq
                       dst.runqueue.add(t)

Figure 2. Structure of load balancing

hardware caches and that are organized into a hierarchy. A

scheduling policy may use the domains to maintain locality

when choosing a new core for a given thread. The Ipanema

DSL allows a scheduling policy to declare attributes of do-

mains, such as the set of cores in the domain and the set of

children of the domain (groups in CFS). The Ipanema DSL

also provides looping operators that allow the load balancing,

unblock, and new event handlers to iterate over the domains

containing a given core, from the smallest, e.g., containing
the core itself, to the largest, e.g., containing all of the cores

on the machine.

3.3 Experience
The main limitations of the DSL are the constraints on which

event handlers may contain an observing phase, i.e., may

observe shared variables, and on what shared variables may

be observed (Section 3.1), and the restriction of loops to

iterate over lists and thus be bounded. These limitations

facilitate proofs, while still making it possible to express a

wide range of scheduling policies.

A policy is compiled into a Linux kernel module, and

loaded at runtime into the kernel. The frontend of the com-

piler amounts to around 37k lines of OCaml code, including

the code for parsing and for validating generic and scheduler-

specific correctness properties. The backend generating C

code amounts to 4,200 lines of OCaml code.

Table 1 gives the size of the four Ipanema policies used

in our evaluation. CFS-CWC is a CWC CFS-like scheduler

that both exploits Linux domains and satisfies the HCWC

property for load balancing. For load balancing, CFS-CWC

achieves HCWCby iterating over all of the cores identified by

can_steal_core() if necessary to find a thread to steal, rather

than abandoning the search if the first selected core turns

out to have no thread available, as done by CFS. CFS-CWC

also removes the rather high (10-25%) imbalance thresholds

imposed by CFS, instead stealing whenever any imbalance

is observed. For unblock and new, CFS searches for idle cores
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Table 1. Expansion ratio of the generated code

Policy DSL LOC C LOC Ratio

CFS-CWC 362 1,526 x4.22

CFS-CWC-FLAT 222 1,267 x5.71

ULE-CWC 243 1,404 x5.78

ULE 260 1,382 x5.32

only within a single domain to prioritise locality. CFS-CWC,

on the other hand, starts the search following the locality

heuristics of CFS, but, if none is found, searches for an idle

core elsewhere on the machine before resorting to a core that

is already running a thread. CFS-CWC-FLAT is a simplified

version of CFS-CWC that considers a flat topology in which

all cores belong to the same domain. ULE is a port in Ipanema

of the FreeBSD ULE scheduler. Its new and unblock handlers

are already work conserving, but its load balancer steals

from a core at most once per balance and thus can leave

cores idle when other cores are overloaded. ULE-CWC is a

CWC version of our ULE scheduler that removes the latter

restriction. These policies rely on the Ipanema abstraction

library, consisting of 1,900 lines of C code, and on the existing

scheduling and context-switch infrastructure of kernel/sched.

In contrast to the 23,000 lines of code found in the kernel/

sched of Linux 4.19, Ipanema isolates the scheduling policy

in a single, easily identifiable place.

The CFS-like policies implemented in Ipanema aim to

reproduce the core scheduling and placement heuristics used

in CFS, but do not reimplement all of CFS’s heuristics and

features. Most notably, we have not implemented cgroups

and NUMA-aware data migration. The generated C files are 3

to 5 times larger than the Ipanema ones (see Table 1). Part of

the explanation is that we care about the human readability

of the generated C code which helps debugging. Still this

ratio gives an estimation of the robustness and productivity

gain in using a DSL.

4 Proving CWC
Our goal is to prove concurrent work conservation proper-

ties of Ipanema code implementing load balancing, unblock-

ing, and placement of new threads. The key challenge in

our proofs is the lockless interaction between the observing

phases of load balancing, unblock, and new, and the updating

phases of the event handlers running on other cores. The

proofs benefit from the constraints on the scheduling code

imposed by the DSL and the DSL compiler.

Our proofs are carried out using the Why3 [5] platform

for deductive verification. Why3 reasons about code written

in WhyML, an ML variant containing imperative features

and notations for expressing invariants. Given WhyML code

annotatedwith pre- and post-conditions, loop invariants, and

any needed assertions, Why3 uses weakest pre-conditions to

generate conditions that must be verified to ensure that the

post-conditions hold. The user can prove these verification

conditions using a large selection of off-the-shelf theorem

provers; we use Alt-Ergo [15] and CVC4 [4].

To interface with Why3, in addition to generating C code

for execution, a separate backend of the Ipanema compiler

also generates WhyML code (see Figure 1). Due to the im-

perative features of WhyML, the WhyML code generated by

the Ipanema compiler closely tracks the generated C code,

with typically a line-by-line correspondence. The Ipanema

compiler also generates the pre- and post-conditions that

correspond to CWC.

Using a DSL and WhyML code allows us to reduce the

proving effort compared to proving C code directly. The C

code works on complex data structures and makes heavy use

of aliases, pointer logic and external code. Proving properties

of such code requires substantial reasoning about raw mem-

ory, to show well-definedness properties of accesses to data

structures, even though such properties are already guaran-

teed by our DSL. Furthermore, the DSL restricts the usage

of shared variables to specific places in specific event han-

dlers, which makes the proofs in the presence of concurrent

scheduling events tractable.

Our approach relies on a trusted computing base con-

sisting of Why3, its underlying theorem provers, and the

Ipanema compiler. This trusted computing base can be re-

duced by relying on recent advances in certified compil-

ers [17, 33]. Furthermore, we assume that the rest of the

kernel obeys the model that we have developed for its inter-

action with the scheduler. In particular, we assume that the

kernel initiates load balancing periodically.

We first present how we model the behavior of the updat-

ing phases of the event handlers, and then consider how to

prove CWC.

4.1 Modeling scheduling event-handler behavior
The event-handler code is executed concurrently on mul-

tiple cores, with no locks ensuring synchronization across

the different cores. Accordingly, CWC proofs must consider

possible interleavings of the individual updates and reads to

shared variables executed by these events, according to our

targeted weak ARM-like memory model or a stricter model.

To create amodel of the possible interleavings between the

event handlers, the Ipanema compiler first extracts the up-

dating phase of each handler, consisting of the state change

operations performed by the handler, any updates to the des-

ignated shared variables cload, the thread count, idle_cores,

and active_cores, as well as their control-flow and data-flow

dependencies. It then subdivides each updating phase into

a sequence of updating fragments, each implemented as a

function containing a single thread-state or shared-variable

update. To respect the control-flow dependencies within a

given event handler, each such function returns a continua-
tion [54], i.e., a data structure encapsulating the identity of

the next instruction to execute and information about any
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local state. Characterizing the effect of concurrent execu-

tion of the event handlers then amounts to characterizing

the effect of all interleavings of the updating fragments that

respect the control-flow represented by the continuations.

To simulate these interleavings, we implement a loop that

randomly chooses a core and a continuation and allows the

scheduling state on that core to advance according to the

function indicated by the continuation, if the randomly cho-

sen continuation is the same as the one currently associated

with the core. The characterization of the effect of the con-

current execution of the event handlers is then derived from

the invariants of this loop.

The interleavings that must be considered depend on the

locks that are held by the different phases of the load bal-

ancing, unblock and new events. The compiler generates three

WhyML functions that simulate different kinds of interleav-

ings:

• others() simulates interleavings of the updating frag-

ments of all event handlers on all cores. The post-

condition of this function represents what can be ob-

served when not holding the lock of any other core.

• others_and_synchronize(c) simulates interleavings of the

updating fragments of all event handlers on all cores

and ensures that core c ends up outside of any event

handler. The post-condition of this function represents

what can be observed after taking the lock of c .
• others_except(c) simulates interleavings of the updat-

ing fragments of all event handlers on all cores except

core c . The post-condition of this function represents

what can be observed while holding the lock of c .

The Ipanema compiler then places calls to others(), others_-

and_synchronize(), and others_except() in the WhyML code

before operations that observe the scheduling state of other

cores, according to the held locks. For example, for load

balancing, a call is added to others() in Phase 1 (Figure 2),

to others_and_synchronize(src) just before the first foreach in
Phase 3, to others_except(src) at the start of the body of the

first foreach in Phase 3, to others_and_synchronize(dst) just be-
fore the second foreach in Phase 3, and to others_except(dst)
at the start of the body of the second foreach in Phase 3.

The principle challenge in reasoning about the concurrent

behavior of the event handlers is that the update of the cload

variable and the thread-count variable (that can be read from

another core by the load balancing, unblock, and new handlers

of the policy) and the movement of threads into and out of

the runqueue (which determines whether a core is actually

idle) are not done atomically. Thus, the value of cload and/or

the thread-count variable can be stale. As noted in Section 3.2,

the Ipanema compiler ensures that the code for a thread state

change operation is always generated such that the cload

or thread-count variable of core c either accurately reflects

the set of runnable threads on these cores, or has a greater

value. We define the predicate synch(c) such that synch(c) is

satisfied if and only if the former case holds. In the latter case,

when ¬synch(c), cload is greater than the actual load of the

runnable threads by the load of the thread that is changing

state and/or the thread-count variable is greater than the

number of runnable threads by 1. For example, on the state

change operation in a block event, the code generated by the

Ipanema compiler first removes the blocking thread from

the runqueue, and then reduces the core’s thread count and

cload accordingly; the compiler enforces this ordering with a

barrier. With respect to our definition of CWC, if ¬synch(c)
holds at the end of load balancing, then the predicate E(c) in
the definition of CWC is true.

Beyond the need to take into account the impact of con-

current updates on non-synchronized reads, verifying CWC

requires knowing whether block (or terminate) or unblock (or

new) events have occurred on other cores since the begin-

ning of the load balancing, unblock, or new operation being

verified. To maintain this information, the Ipanema compiler

generates ghost code [22]. Such code does not map to any

C code but rather is included in the WhyML code only to

enable a proof. Ghost code is available in a number of proof

tools in addition to Why3, such as Dafny [31] and Leon [30].

Concretely, the Ipanema compiler instruments the generated

WhyML code to maintain boolean maps B andU that record

the set of cores on which threads have blocked or unblocked,

respectively, since the start of the execution of the CWC

operation.

Given the above generated code, the scheduler developer

must prove that the relations shown in Figure 3 hold between

the state before and after calling each of others(), others_-

and_synchronize(), and others_except(). In this figure, |c | is the
number of runnable threads on the core after the call, and

|c |− is the number of such threads before the call. Continu-

ing with the example of a thread blocking on core c , when
the event handler starts, synch(c) holds. After removing the

thread from the runqueue ¬synch(c), B(c), and |c | < |c |−

hold. After updating cload and the thread-count variable,

synch(c) should hold again, but |c | < |c |−. As B(c) is still
true, this situation satisfies synch(c). Finally, changing the

state of the blocking thread to indicate that it has blocked has

no effect on synch(c), B(c), and the value of |c |. Further block-
ing events on the same core will further reduce the number

of runnable threads on the core. unblock events may raise the

number of threads on the core as compared to the original

number, butU (c) will also be set in this case. The Ipanema

compiler generates post-conditions expressing these rela-

tions in each of the functions generated from the updating

fragments of the event handlers and in the definitions of

others(), etc.

The scheduler developer must also prove that the inter-

leaving of events does not lose or gain any threads, except

by terminate and new events, respectively. The Ipanema com-

piler includes post-conditions expressing this property in

the generated functions.
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|c | = |c |− ∨

(B(c) ∧ |c | < |c |−) ∨
(U (c) ∧ |c | > |c |−)

|c | = |c |− − 1 ∨

(B(c) ∧ |c | < |c |−) ∨
(U (c) ∧ |c | ≥ |c |−)

¬synch(c)
|c | = |c |− + 1 ∨
(B(c) ∧ |c | ≤ |c |−) ∨
(U (c) ∧ |c | > |c |−)

|c | = |c |− ∨

(B(c) ∧ |c | < |c |−) ∨
(U (c) ∧ |c | > |c |−)

Figure 3. Relation between synch(c) and the number of

threads on core c before and after an updating fragment

4.2 Load balancing, unblock and new
Load balancing. For load balancing, the Ipanema policy

developer only provides the strategies for collecting relevant

cores (can_steal_core()), selecting a core from which to steal

(select_core()), and the operations to perform when stealing

(steal_thread()). The Ipanema compiler generates WhyML

functions and associated lemmas describing this code and its

expected behavior. The main part of the load balancing algo-

rithm is represented by the code in Figure 2. From this code,

the Ipanema compiler generates a proof skeleton, parameter-

ized by the can_steal_core(), etc. operations. According to

the definition of global CWC (Definition 3), the proof skele-

ton proves as a post-condition the following property of the

system state p at the end of load balancing:

(exists c:int. overloaded p c ∧ not(u[c]))→

(forall c':int. not(idle p c') ∨ b[c'] ∨ not(synch p c'))

Proving the result of instantiating the proof skeleton with

the definitions of our CFS and ULE-like CWC policies is

straightforward using the automation provided by Why3.

Unblock andnew. For unblock and new events, the Ipanema

policy developer provides the complete implementation, and

thus no proof skeleton can be provided. The Ipanema com-

piler translates the provided handlers into WhyML code,

annotated with a post-condition expressing the LCWC prop-

erty (Definition 3), where p represents the system state at

the end of the event and c represents the chosen core:

overloaded p c ∧ not(u[c])→

(forall c':int. not(idle p c') ∨ b[c'] ∨ not(synch p c'))

The unblock code of ULE-CWC (lines 62-69 of Listing 1)

performs two searches, first within the hierarchy to find

an idle core among the cores sharing an L2 cache with the

core on which the thread previously blocked, and then if

the first search fails, across the entire system to find the

least loaded core. To represent this algorithm, the Ipanema

compiler generates around 250 lines of code. Currently, the

scheduler developer must place loop invariants in this code

manually in order to carry out the proof. As thread placement

algorithms typically involve simple searches over sets of

cores, we are exploring whether the Ipanema compiler can

further generate some of the required loop invariants [2].

The treatment of the new event-handler code is similar.

4.3 CWC bugs found while writing policies
In developing our Ipanema CWC scheduling policies, we

made a few errors, for example, in the criteria used by can_-

steal_core() in the load-balancing algorithm. Trying to verify

the Ipanema load-balancing proof skeleton based on these

incorrect definitions showed that some of the verification

conditions generated by Why3 could not be proved by the

available solvers. While no counterexamples were provided,

knowing which verification condition fails helped us find

examples showing that our definitions were not CWC.

We additionally tried to prove the local CWC property of

CFS’s new and unblock thread placement algorithms. These

proofs also fail, because CFS’s algorithms never check for

idle cores across the entire machine, but focus on the domain

of the core of the parent and the domain of the core where

the thread ran previously, respectively. As a consequence, a

NUMA node might become overloaded even when the rest of

the machine is mostly idle. Again, examining the verification

conditions that were not provable helped to understand the

problem. This issue in unblock is the root cause of the fourth

WC bug described by Lozi et al. [36] that remains unfixed. In

Section 5.2, we see the practical impact of the issue in new on

the NAS benchmarks, where a large number of threads are

created at the same time and have to be placed on a large

number of cores.

4.4 Proof assessment
In summary, proving a scheduling policy CWC requires

(i) proving that the interleavings of the updating phases

of the event handlers respect the starting and ending state

properties defined at the end of Section 4.1, (ii) proving that

the definitions in the load balancing algorithm allow prov-

ing the load-balancing proof skeleton, and (iii) proving that

the code provided for unblock and new satisfies LCWC. Our

proofs are built on a library of useful operations on threads

and states, amounting to around 2000 lines of WhyML code,

developed part time over 1 person-year, while learning how

to use Why3. The load balancing proof skeleton is around

700 lines of code and was developed in 4 person-months of

full time effort. Why3 is normally run interactively, in a ded-

icated IDE, making it difficult to estimate the proving time

experienced while developing the proof. Each completed

CWC proof for the policies we considered (ULE-CWC and

CFS-CWC) could be replayed in around 10 minutes on a 44-

core server (2.20GHz, 256GB RAM). This time represents the

time for generating the verification conditions and invoking

and running the solvers.
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5 Performance Evaluation
In this section, we evaluate the performance of Ipanema

schedulers with respect to production schedulers such as

CFS. We aim to evaluate the potential overhead of CWC

schedulers. There are two potential sources of overhead:

(i) the use of locks in the updating phases of events; as locks

are placed automatically, their use may be less efficient than

in the hand-optimized CFS code and (ii) the fact that CWC

implies suppressing load balancing concurrency, in contrast

to vanilla CFS which supports concurrent load balancing.

Our results show that CWC policies improve performance

on benchmarks that exhibit a lack of work conservation with

CFS. On other benchmarks, our DSL-based approach is on

par with CFS and ULE, and the potential sources of overhead

do not negatively impact performance, even on a machine

with a large number of cores.

5.1 Experimental setup
We perform our evaluation on a 4-socket Xeon E7-8870 v4

machine (80 cores/160 hardware threads) with 512GB of

RAM, running the Debian Buster OS. In the rest of this sec-

tion, for simplicity, we refer to hardware threads as cores.

Experiments were done with the Linux governor in perfor-
mance mode to remove the effects of dynamic frequency

scaling. We run a modified Linux 4.19 kernel that supports

Ipanema schedulers. Modifications include adding a softirq

used for the load balancing event, which is called every 4ms

(the default duration of a tick in Linux), and modifying fast-

paths that assume that if CFS has no thread to run, then the

machine is idle. In total, fewer than 20 lines of code had to be

modified. The modifications do not impact the performance

of CFS or Ipanema.

We evaluate five schedulers, CFS, CFS-CWC, CFS-CWC-

FLAT, ULE, and ULE-CWC. CFS is Linux’s vanilla scheduler

of the 4.19 kernel, used as a baseline comparison. CFS is

written in C. The Ipanema schedulers are those described in

Section 3.3. As workloads, we use benchmarks from the NAS

benchmark suite [3], as well as Kbuild and Sysbench. These

benchmarks stress schedulers by heavily creating and/or

blocking and unblocking threads.

The NAS benchmark suite is composed of parallel sci-

entific kernels. We exclude I/O-based kernels because they

exhibit a high standard deviation on our machine, and keep

all of the applications (BT, CG, EP, FT, IS, LU, MG, SP, and

UA) that are dominated by computations and synchroniza-

tions (e.g., barriers). The NAS benchmarks are challenging

from a work conservation point of view, because they create

and unblock many threads at once. Indeed, they exhibit a

work conservation issue (see Section 4.3) with CFS that our

CWC policies are able to resolve almost completely.

The other benchmarks in this evaluation do not exhibit

work conservation issues, but they are useful to evaluate po-

tential overheads of CWC policies relative to production OS

schedulers such as CFS and ULE. Sysbench [51] is a scriptable

benchmark tool that includes OLTP benchmarking. We run

Sysbench on two databases, MySQL 8.0.15, and MongoDB

4.1.8, using a mix of read/write OLTP queries to evaluate

request latency and throughput. Sysbench and the database

threads share all themachine cores, and the database is stored

in memory using a ramfs partition. Kbuild is a parallel batch

application that builds the Linux kernel using make accord-

ing to the configuration obtained with make defconfig with

different numbers of jobs. The kernel source tree is placed

in a ramfs partition in order to avoid physical I/O. For all

experiments, the results presented are the mean of 12 runs.

5.2 NAS: solving work-conservation issues
We first assess the efficiency of thread placement in terms of

work conservation. For this, we use the NAS benchmarks,

which are run with 160 threads, i.e., the same number of

threads as cores. Overall, all Ipanema schedulers perform

better than vanilla CFS as shown in Figure 4. The geometric

mean improvement is 15.5% for ULE, 11.8% for CFS-CWC,

14.0% for CFS-CWC-FLAT, and 14.4% for ULE-CWC, show-

ing that the implementation strategies used by the Ipanema

compiler are sufficient to give good performance.

The lower performance of CFS is due to the work con-

servation issue on a new event highlighted in Section 4.3. To

identify the issue, we recorded and compared the size of the

runqueues using the scheduler profiling tools SchedLog and

SchedDisplay that we developed in previous work [9]. Fig-

ure 5a shows the beginning of the execution of FT under CFS

which is representative of the placement problem. Gray lines

mean that there is only one thread on the core and the thread

is running, while red lines mean that the core is overloaded,

i.e., one thread is running and at least one other thread is

runnable. CFS places all new threads on the same NUMA

node as the thread that performed the thread creation. As

a consequence, initially, all threads are created on a single

NUMA node (cores 120-159), and the cores of this NUMA

node become overloaded while the rest of the machine is idle.

It is then up to the periodic load balancer to balance the load,

which is done in multiple rounds, one per scheduling domain

of the hierarchy. Therefore, it is only at 0.5s that all of the

cores get a thread, with the load balancer sometimes making

placement errors later. The fact that cores are overloaded

causes some threads to reach barriers late, which increases

the time that all threads must spend in them. Therefore, the

barriers are clearly visible in Figure 5a. Figure 5b shows the

same execution with CFS-CWC. There are only two place-

ment errors at startup which are due to concurrent unblocks

choosing the same core, which can introduce a WC issue but

is tolerated by CWC. Subsequently, no core is overloaded, so

the system is work conserving. Threads execute in a much

more synchronized way and spend less time in barriers. Note

that the problem of concurrent unblocks potentially occurs
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Figure 4. Performance of NAS with 160 threads

(a) Execution with vanilla CFS.

(b) Execution with CFS-CWC.

Figure 5. First 0.8s of the execution of NAS FT.C

whenever multiple threads are woken simultaneously. There-

fore, it impacts workloads that have many threads waiting

on locks.

On UA, CFS-CWC is to 5% slower than CFS even though

CFS again suffers from the same bad placement problem

on the first unblock, delaying threads at barriers. Profiling

revealed that load balancing was not the issue and we inves-

tigated locality since some NAS applications are known to be

placement sensitive [16]. To confirm this hypothesis, we ran

the NAS applications, pinning threads to cores and varying

the initial placement of threads. We observe performance

differences of up to 33% between placements.

Heuristics that lead to work conservation violations are

hard to detect using standard profiling tools. They do not

cause the system to crash or hang, but eat away at perfor-

mance. We found the work conservation issue exhibited by

FT when reimplementing CFS in Ipanema. Our proofs indi-

cated a possible work conservation problem in the code of

the unblock and new events, which was easy to understand

once it was pointed out.

5.3 Performance impact on other workloads
We now evaluate the performance impact of our DSL-based

approach on workloads that are scheduling intensive but do

not exhibit work conservation issues. We first run Kbuild

with up to 256 concurrent jobs (see Figure 6a). On our ma-

chine with 160 cores, for all schedulers, there is an increase

of performance up to 128 jobs. With more jobs, performance

worsens a little and then stays stable. While CFS is less effi-

cient, the maximum difference compared to Ipanema sched-

ulers is less than 6%. The small gains in performance are

explained by the thread placement strategy when a thread is
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unblocked. Our CWC policies use a more aggressive strategy,

trying to place threads on idle cores. As seen in NAS, CFS

favors preserving cache locality over work conservation and

delays thread migrations.

We then benchmark the MySQL and MongoDB databases,

which are highly demanding in terms of locking. Figures 6b

and 6d present the performance in terms of throughput for

the OLTP benchmarks, while Figures 6c and 6e present the

95
th

percentile of response times. For MySQL with 64 clients

or more, CFS performs a little worse than all of our Ipanema

schedulers in terms of throughput, with the highest differ-

ence being 8.2% (compared to CFS-CWC with 128 clients).

For MongoDB, all schedulers perform similarly, with perfor-

mance differences reaching at most 3%. In terms of latency,

all schedulers also exhibit small differences, with at most

11% for MySQL. We believe that the differences are again

due to the placement strategy in unblock events, which occur

at a high rate in these benchmarks.

A potential overhead of our CWC policies is that, unlike

in CFS, load balancing is not concurrent: one core performs

load balancing for the entire machine. The CFS-CWC-FLAT

policy pushes this to an extreme; as it considers that all cores

belong to a single domain, each load balancing tries to steal

for each core from all of the other cores. This thus represents

a worst case bound on the Ipanema load balancing cost. In

our experiments, we find that CFS-CWC-FLAT is sometimes

better and sometimesworse than the others. On the one hand,

the single domain slows down load balancing as compared

to CFS(-CWC) since all of the cores are observed during load

balancing. On the other hand, load balancing is done in a

single round, while CFS(-CWC) may take several rounds (one

per hierarchy domain) to distribute thread across the entire

machine. The results across all of the benchmarks show no

clear winning strategy on our 160 core machine.

6 Related Work
Kernel correctness. Testing is the conventional approach

to improve kernel correctness. Linux relies on various test

suites [34] and community testing to detect bugs. Initiatives

have also been deployed to more comprehensively assess

kernel performance. For instance, the Linux Kernel Perfor-

mance project [13] has been created to detect performance

regressions in the Linux kernel, and work has been done

to automatically detect system calls that take an “abnormal”

amount of time [43, 48]. While obvious design flaws can be

detected, more subtle bugs or bugs that happen on certain

hardware may be easily missed.

Model checking has also been used to improve kernel

correctness by finding bugs that lead to crashes [41], errors

in network control planes [19] and code paths that lead to

deadlocks [57]. Model checking of schedulers is challenging

due to the combinatorial blow up of the state space due to

interactions between a potentially large number of threads

and cores.

Recent work has focused on constructing formal speci-

fications of operating systems and proving that the imple-

mentation follows the specification. SeL4 was the first fully

specified and verified micro-kernel running on a single-core

machine [29]. CertiKOS [24] is a verified modular micro-

kernel that supports concurrency. However, these two sys-

tems have not verified their schedulers to be work conserv-

ing. CertiKOS also forbids concurrent accesses to shared

variables. Hyperkernel [42] provides a push-button verifi-

cation system for operating systems, but does not offer any

support for concurrency. Other work has been done in bet-

ter specifying individual behaviors, such as avoiding buffer

overflows, accesses to shared variable outside of critical sec-

tions, or deadlocks [18, 20, 21, 35, 37, 44, 45, 52]. Like these

approaches, we do proofs on concurrent code by verifying

invariants on concurrent events.

Recent work has also focused on specifications that cover

high-level properties of some subsystems of an OS. For in-

stance, file system implementations have been proved resis-

tant to crashes [1, 11, 12, 49], and Frost et al. [23] have formal-

ized file-system dependencies (e.g., a read must be done after

a write). Finally, other work has targeted the verification

of complex properties in distributed systems [25–27, 55]. In

this work, we focus on the challenges of proving properties

when reads to shared variables are allowed outside of critical

sections on a single machine.

Scheduling. PROSA [10] explored proofs of schedulabil-

ity analysis for real-time systems. Xu et al. [56] formalized

the speed of convergence of various load-balancing algo-

rithms. Their manual proofs could be reused in our system

to prove that the implementations of their load balancing

algorithms are work conserving.

DSLs. Schüpbach et al. have designed a DSL to abstract

the topology of multicore machines [47]. Muller et al. have

previously used a DSL to develop schedulers in the context

of the Bossa framework [40]. In the case of Bossa, the guar-

antees of the DSL were used to prove low-level scheduling

properties of single-core schedulers, for instance that a core

never executes a blocked thread. We built upon this work

for the design of Ipanema.

In a preliminary work [32], we introduced abstractions for

proving WC (Section 2.2); the proofs require the absence of

concurrent scheduling events during load balancing. No im-

plementation was described. This paper adds concurrent

scheduling events, and provides a complete solution for

programming CWC scheduling policies and proving them

thanks to our DSL.

Delaware et al. [17] also exploit the use of a DSL to ensure

correctness properties. They provide a framework for de-

veloping optimizing compilers for DSLs in which each step

of the compiler is implemented as a transformation that is
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Figure 6. Performance of vanilla CFS, ULE, CFS-CWC, CFS-CWC-FLAT and ULE-CWC

formally verified in Coq. In contrast, we exploit a DSL to re-

strict the structure of the generated code, making it possible

to verify the latter code’s algorithmic properties.

7 Conclusion
Writing a scheduler for a multicore system is error-prone. In

this paper, we have presented a methodology to write mul-

ticore schedulers with provable correctness properties. We

have shown how to prove work conservation for a scheduler

that reads the instantaneous state of other cores without

holding locks, and thus might take decisions based on out-

of-date information.

We believe our approach could be leveraged to ease the

development of novel scheduling policies, in existing oper-

ating systems, or in OS courses. In future work, we want

to extend our approach to prove other properties such as

thread liveness. Our code and proofs are publicly available

at https://gitlab.inria.fr/ipanema-public.
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A Simplified BNF grammar of Ipanema
entry ::= scheduler id = {topdecl∗ body∗}
topdecl ::= constdef | typedef | scheddef | pstatedef | cstatedef | globaldef
constdef ::= system? const id = exp;
typedef ::= type id = struct {vardecl+} ; | type id = enum {id+} ;
scheddef ::= (domain | group | thread) = {vardecl+}
pstatedef ::= threads = {pstatedecl+} | coredef
cstatedef ::= cores = {cstatedecl+}
coredef ::= core = {coredecl+

coredecl ::= vardecl | pstatedef | steal
globaldef ::= vardecl | system? type id(param∗);

pstatedecl ::= system?

cstatedecl ::= (active | sleeping) core id;
| (active | sleeping) set<core> id;

steal ::= steal(group id, core id) = {stealgrp}
| steal((core id))? = {stealthd}

stealgrp ::= filtergrp selectgrp stealthd until?

| filtergrp do {selectgrp stealthd stmt} until
stealthd ::= filter select migrcond

| filter do {select migrcond stmt} until?

filtergrp ::= can_steal_group (group id, group id) {exp} => id
selectgrp ::= select_group() {exp} => id
filter ::= can_steal_core((core id,)? core id) {exp} => id

select ::= select_core() {exp} => id
migrcond ::= steal_thread((group id,)? core id, thread id) stmt until?

until ::= until (exp)
body ::= handler(type id) {event∗} | interface = {fctdef ∗} | fctdef ∗

fctdef ::= type id (param∗) stmt
event ::= On synchronized? eventid stmt
eventid ::= schedule | unblock | block | new | terminate | yield | tick

vardecl ::= system? type id | lazy? type id = exp
stmt ::= foreach( id in exp order? ) stmt | loc => exp; | ...
exp ::= self | exp in loc | first(exp order?) | valid(exp)

| empty(exp) | syscores() | ...
loc ::= id | state | self | loc.id | first(exp order?)
order ::= order = {(highest | lowest) id}

https://gitlab.inria.fr/ipanema-public
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