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Dynamic Frequency Scaling Before

CPU frequency changes depending on load
Frequency is managed at chip granularity

The load of a single CPU impacts the frequency
of all CPUs on the chip

GHz GHz With all CPUs fully loaded, nominal frequency is

CPU2 CPU 3 guaranteed

Turbo mode: when some CPUs are idle, busy
CPUs can use even higher frequencies

0% 0%
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Dynamic Frequency Scaling Now

Frequency is managed at core granularity

At least since:
- Intel® Cascade Lake (2019)
- AMD® Ryzen (2019)

|dle cores can run at minimal frequency while
other cores run at maximal frequency
— Energy savings

Each core individually sets a frequency that
matches its load




Previous Work

Focus on changing the frequency to match load
- Linux scaling governors (ondemand, schedutil)
- hardware frequency scaling (Intel)

Frequency scaling was used to
- maximize instructions per joule metric (Weiser'94)
- reduce contention (Merkel'10, Zhang’10)
- reduce energy usage (Bianchini’03)

Recent work by the Linux scheduler community
- TurboSched: small jitter tasks on Turbo cores

- support for heterogeneous architectures (big.LITTLE), ...
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Case Study: Compiling Linux

Setup:
- 4x20-core Intel® Xeon E7-8870 v4 (160 HW threads with HyperThreading)
- 2.1 GHz nominal frequency, up to 3.0 GHz with Turbo Boost®
- Per-core frequency scaling
- 512 GB of RAM
- Debian 10 Buster with Linux 5.4

Maximum Turbo frequencies:

Active cores 1-2 3 4 5-8 >8

Max Turbo 3.0 GHz 2.8 GHz 2.7 GHz 2.6 GHz 2.1 GHz

For clarity, we only present the compilation of the scheduler subsystem
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Case Study: Tracing the Frequency
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Case Study: Tracing the Frequency
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Case Study: Tracing the Frequency
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Case Study: Zooming In
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Case Study: Zooming In

Frequencies
1.2 GHz

(1.2, 1.7] GHz
(1.7, 2.1] GHz
—— (2.1, 2.6] GHz
—— (2.6, 3.0] GHz

Busy at low frequency

Idle at high frequency

— Idle
m—  Busy
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Frequency and load are mismatched!
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Frequency Transition Latency

FTL: Latency between a change of load and change of frequency
We measure it from idleness to 100% load on our server
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Frequency Transition Latency

FTL: Latency between a change of load and change of frequency
We measure it from idleness to 100% load on our server

Frequency: —+— current —-== base —-== min —== max

Workload: start end

0% — 100% : 29 ms 3.00 29om R
100% — 0% : 98 ms 2.75
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Tracing Scheduler Events

Behavior of Linux scheduler (CFS):

New and waking threads are placed on
idle cores if available
— work conserving

Co

C,

Sfork\

wait

S

C,

&
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Tracing Scheduler Events

Behavior of Linux scheduler (CFS):

New and waking threads are placed on CO Cl CZ C3
idle cores if available
Sfork

— work conserving ~
wait
fork — .

This repeated fork/wait pattern is a wait
common occurrence in our case study. - Sfork
% wait

23



Problem: Frequency Inversion

Long FTLs Work conserving scheduler
160 Frequencies
140 ——— =1 — 1.2GHz CO Cl C2 C3
1207 Car 2o
7, 2. z
0 100 B (2.1, 2.6] GHz Sfork\
s 80 —— (2.6, 3.0] GHz wait
60 —] I Sfork\
4011 ] — Idle wait
20 = Busy A/gfork
%675 1.000 1.025 1.050 1.075 wait

Time in seconds

The frequencies at which two cores operate are
inverted as compared to their load
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Problem: With CFS

Co C,
forik()\,

’ |deal situation,
both cores are busy
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Problem: With CFS

Co C,
fo§k()\>

’ |deal situation,
both cores are busy

X

Co Gy
fo%k()\,
wait()

Two cores used for a sequential work,
prone to frequency inversion
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Solution 1: Local Placement

We propose local placement with S

local”
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We propose local placement with S

local”

Parent thread runs on C, calls the fork() syscall.
CFS decides to place the child thread on C..

28



Solution 1: Local Placement

We propose local placement with S

local”

Parent thread runs on C, calls the fork() syscall.
CFS decides to place the child thread on C..

Instead, S,___ cancels this migration and always places the
child thread on C,,.
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Solution 1: Local Placement

We propose local placement with §,___ .

Parent thread runs on C, calls the fork() syscall.
CFS decides to place the child thread on C..

Instead, S, _, cancels this migration and always places the
child thread on C,,.

Parent thread calls the wait() syscall, the child thread is
scheduled on C,.

We use a single core for a sequential work.
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Solution 1: Local Placement

We propose local placement with S

local”

Parent thread runs on C, calls the fork() syscall.
CFS decides to place the child thread on C..

Instead, S,___, cancels this migration and always places the
child thread on C,,.
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We propose local placement with §,___ .

Parent thread runs on C, calls the fork() syscall.
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Parent thread runs on C, calls the fork() syscall.
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Solution 1: Local Placement

We propose local placement with §,___ .

Parent thread runs on C, calls the fork() syscall.
CFS decides to place the child thread on C..

Instead, S, _, cancels this migration and always places the
child thread on C,,.

If the parent thread keeps running, C will stay overloaded,
until load balancing migrates the child thread on C..

Both cores are used, but we lost tens of milliseconds of
execution for the child thread.
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Solution 1: Local Placement

— 1.2 GHz — (1.2, 1.7] GHz — (1.7,2.1]GHz  —— (2.1, 2.6] GHz

— (2.6, 3.0] GHz

sS40

140 e, OO - = = == —— N _‘_E_

byt s = o = — = =

100 = = -
801 S — s

nie— i = = =
20+= = e o
0E " _ e — =

0 1 2 3

Time in seconds

N

35



Core

Core

Solution 1: Local Placement
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Solution 1: Local Placement
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Core

Solution 1: Local Placement
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Solution 2: Deferring Thread Migrations

We propose to delay migrations with S _ . C
0

C,
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Solution 2: Deferring Thread Migrations

We propose to delay migrations with S__ __ . C C
0 1

runs on C, calls the fork() syscall.
CFS decides to place the onC.. i
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Solution 2: Deferring Thread Migrations

We propose to delay migrations with S

move’

Parent thread runs on C, calls the fork() syscall.
CFS decides to place the child thread on C..

If C, runs at a low frequency, instead of placing the child
thread on C,, we arm a timer that expires in 50us and place
the child thread on C,..
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Solution 2: Deferring Thread Migrations

We propose to delay migrations with S

move’

Parent thread runs on C, calls the fork() syscall.
CFS decides to place the child thread on C..

If C, runs at a low frequency, instead of placing the child
thread on C,, we arm a timer that expires in 50us and place
the child thread on C,..

When the timer is triggered 50us later, we migrate the child
thread to C..
We only lose 50us compared to CFS or S

local”
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Solution 2: Deferring Thread Migrations

We propose to delay migrations with S

move’

Parent thread runs on C, calls the fork() syscall.
CFS decides to place the child thread on C..

If C, runs at a low frequency, instead of placing the child
thread on C,, we arm a timer that expires in 50us and place
the child thread on C,..
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Solution 2: Deferring Thread Migrations

We propose to delay migrations with §_ . C C
0 1

Parent thread runs on C, calls the fork() syscall.
CFS decides to place the child thread on C..

If C, runs at a low frequency, instead of placing the child f k
thread on C,, we arm a timer that expires in 50us and place Or):.() \>® 50 s
the child thread on C,. wa |t()

Parent thread calls the wait() syscall, the child thread is
scheduled on CO, the timer is cancelled.
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Solution 2: Deferring Thread Migrations

We propose to delay migrations with §_ . C C
0 1

Parent thread runs on C, calls the fork() syscall.
CFS decides to place the child thread on C..

If C, runs at a low frequency, instead of placing the child f k
thread on C,, we arm a timer that expires in 50us and place Or):.() \>® 50 s
the child thread on C,. wa |t()

Parent thread calls the wait() syscall, the child thread is
scheduled on CO, the timer is cancelled.

This sequential program uses a single core, running at a
high frequency, and C, stays idle.
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Solution 2: Deferring Thread Migrations
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Solution 2: Deferring Thread Migrations
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Solution 2: Deferring Thread Migrations
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Solution 2: Deferring Thread Migrations

— 12GHz — (1.2,1.71]GHz —— (1.7, 2.1]1GHz
160 —

—— (2.1,2.6]GHz  —— (2.6, 3.0] GHz

120 == — =—— —

100+ .

Core
3
|
|l

I

|

X
hml
[l

I

|

e

I

1i
|
|

{4 '||’|
l !1' I

|
| w_]
o

Ul

140 =T
120 i N Vo S
, 100 e | —
Y 20 _ -
40 = :_ = 1
20 [ = =
0 ————
4

Time in seco

<5 cores used, more
Turbo

Longer high
frequency periods

sS40

aAoW

52



Our Solutions: Slocal and S

move

Both solutions behave similarly on our case study
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Our Solutions: Slocal and S

move

Both solutions behave similarly on our case study

Slo‘:al is more aggressive and simple (3 lines of code),
changes the behavior of CFS and heavily relies on periodic load
balancing to fix mistakes
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Our Solutions: Slocal and S

move

Both solutions behave similarly on our case study

S

S

local

move

is more aggressive and simple (3 lines of code),
changes the behavior of CFS and heavily relies on periodic load
balancing to fix mistakes

is more balanced, and accounts for frequency,
more complicated (124 lines of code, timers), but keeps the overall
ideas of CFS
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Performance and Energy Evaluation

60 applications from:
- NAS: HPC applications,
- Phoronix: web servers, compilations, DNN libs, compression, databases, ...
- hackbench & sysbench OLTP

2 machine markets:
- Server: 80-core Intel® Xeon E7-8870 v4 (160 HW threads)
- Desktop: 4-core AMD® Ryzen 5 3400G (8 HW threads)

2 frequency scaling governors:
- powersave
- schedutil
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Performance and Energy Evaluation

Compared to CFS, server machine, powersave governor, higher is better
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Performance and Energy Evaluation

Compared to CFS, server machine, powersave governor, higher is better
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>23 apps outperform CFS
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Fewer Cores, More Hertz: Leveraging High-Frequency Cores in the OS Scheduler
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Abstract
In modem server CPUS, individual cores can run at different
frequencies, which allows for fine-grained control of the per-
formance/energy tradeoff. Adjusting the frequency, however,

for 23 applications, and worsens performance by more than
5% (at most 8%) for only 3 applications. On a 4-core AMD
Ryzen we obtain performance improvements up to 6.

1 Introduction

Striking a balance between performance and energy consump-
tion has long been a battle in the development of computing
systems. For several decades, CPUs have supported Dynamic
Frequency Scaling (DFS). allowing the hardware or the soft-
ware to update the CPU frequency at runtime. Reducing CPU
frequency can reduce energy usage, but may also decrease
overall performance. Still, reduced performance mity be ac-
ceptable for tasks that are often idle or are not very urgent,
making it desirable 1o save energy by reducing the frequency
in many use cases, While on the first multi-core machines, all
cores of a CPU had 1o run at the same frequency, recent server
CPUs from Intel® and AMD® make it possible to update the
frequency of individual cores. This feature allows for much
fincr-grained control, but also raises new challenges.

go-
go-

One source of challenges in managing core ies is.

aluation

ave governor, higher is better

the Frequency Transition Latency (FTT). Tndeed, transitioning
a core from a low to a high frequency, or conversely, has an
FTL of dozens to hundreds of milliseconds. FTL leads to a
problem of cy inversion in scenarios that are typical

o .
1 be executing at a low frequency because it was previously
idle. Consequently, the frequencies at which C,r and Ceps
operate are inverted as compared to the load on the cores. This
frequency inversion will not be resolved until G, 4,, reaches
a low frequency and Ceps reaches a high frequency, i.
the duration of the FTL. Current hardware and software
DFS policies. including the schedut i1 policy (9] that was
recently added to CFS cannot prevent frequency inversion
as their only decisions consist in updating core frequencies,
thus paying the FTL cach time. Frequency inversion reduces
performance and may increase energy usige.

In this paper, we first exhibit the problem of frequency in-
Version in a real-world scenario through a case study of the
behavior of CFS when building the Linux kernel on a Intel®
Xeon-based machine with 80 cores (160 hardware threads)
Our case study finds repeated frequency inversions when pro-
cesses are created through the for (| and wait () system
calls, and our profiling traces make it clear that frequency
inversion leads to tasks running on low frequency cores for a
significant part of their execution.
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Take away

Frequency inversion problem
- FTL + frequency agnostic scheduler
- New because of per-core dynamic frequency scaling

Solutions implemented in Linux

- SI . simple, aggressive, relies on load balancing
ocal

- S__ :frequency-aware, more balanced

move’

- Both are available at: https://qitlab.inria.fr/whisper-public/atc20

Possible extensions:
- Fully frequency aware scheduler
- Modeling the frequency behavior of a CPU (#active cores, temperature,
instruction set, ...)
- Shortening FTL with faster frequency reconfiguration
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