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CPU frequency changes depending on load

Frequency is managed at chip granularity

The load of a single CPU impacts the frequency 
of all CPUs on the chip

With all CPUs fully loaded, nominal frequency is 
guaranteed

Turbo mode: when some CPUs are idle, busy 
CPUs can use even higher frequencies
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Frequency is managed at core granularity

At least since:
- Intel® Cascade Lake (2019)
- AMD® Ryzen (2019)

Idle cores can run at minimal frequency while 
other cores run at maximal frequency

→ Energy savings

Each core individually sets a frequency that 
matches its load



Previous Work

Focus on changing the frequency to match load
- Linux scaling governors (ondemand, schedutil)
- hardware frequency scaling (Intel)

Frequency scaling was used to
- maximize instructions per joule metric (Weiser’94)
- reduce contention (Merkel’10, Zhang’10)
- reduce energy usage (Bianchini’03)

Recent work by the Linux scheduler community
- TurboSched: small jitter tasks on Turbo cores
- support for heterogeneous architectures (big.LITTLE), ...
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Case Study: Compiling Linux
Setup:

- 4x20-core Intel® Xeon E7-8870 v4 (160 HW threads with HyperThreading)
- 2.1 GHz nominal frequency, up to 3.0 GHz with Turbo Boost®
- Per-core frequency scaling
- 512 GB of RAM
- Debian 10 Buster with Linux 5.4

Maximum Turbo frequencies:
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Active cores 1-2 3 4 5-8 >8

Max Turbo 3.0 GHz 2.8 GHz 2.7 GHz 2.6 GHz 2.1 GHz

For clarity, we only present the compilation of the scheduler subsystem
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Few cores running 
but no Turbo!

Most cores used, but frequency
is lower than nominal!



Case Study: Zooming In

15



Case Study: Zooming In

16

Busy at low frequency



Case Study: Zooming In

17

Busy at low frequency

Idle at high frequency



Case Study: Zooming In

18

Busy at low frequency

Frequency and load are mismatched!

Idle at high frequency



Frequency Transition Latency
FTL: Latency between a change of load and change of frequency
We measure it from idleness to 100% load on our server
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Changing frequency is not 
instantaneous!

    0% → 100% :  29 ms
100% →     0% :  98 ms



Tracing Scheduler Events
Behavior of Linux scheduler (CFS):

New and waking threads are placed on 
idle cores if available

→ work conserving
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→ work conserving
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This repeated fork/wait pattern is a 
common occurrence in our case study.



Problem: Frequency Inversion
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Long FTLs Work conserving scheduler

+

The frequencies at which two cores operate are
inverted as compared to their load

=
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Ideal situation,
both cores are busy

Two cores used for a sequential work,
prone to frequency inversion



Solution 1: Local Placement
We propose local placement with Slocal.
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Solution 1: Local Placement
We propose local placement with Slocal.

Parent thread runs on C0, calls the fork() syscall.
CFS decides to place the child thread on C1.

Instead, Slocal cancels this migration and always places the 
child thread on C0.

Parent thread calls the wait() syscall, the child thread is 
scheduled on C0.

We use a single core for a sequential work.
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Solution 1: Local Placement
We propose local placement with Slocal.

Parent thread runs on C0, calls the fork() syscall.
CFS decides to place the child thread on C1.

Instead, Slocal cancels this migration and always places the 
child thread on C0.

If the parent thread keeps running, C0 will stay overloaded, 
until load balancing migrates the child thread on C1.

Both cores are used, but we lost tens of milliseconds of 
execution for the child thread.
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24% faster than CFS

24% less energy 
used

<5 cores used, more 
Turbo

Longer high 
frequency periods

C
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local
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We propose to delay migrations with Smove.
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Solution 2: Deferring Thread Migrations
We propose to delay migrations with Smove.

Parent thread runs on C0, calls the fork() syscall.
CFS decides to place the child thread on C1.

If C1 runs at a low frequency, instead of placing the child 
thread on C1, we arm a timer that expires in 50µs and place 
the child thread on C0.

When the timer is triggered 50µs later, we migrate the child 
thread to C1.
We only lose 50µs compared to CFS or Slocal.

44



Solution 2: Deferring Thread Migrations
We propose to delay migrations with Smove.

Parent thread runs on C0, calls the fork() syscall.
CFS decides to place the child thread on C1.

If C1 runs at a low frequency, instead of placing the child 
thread on C1, we arm a timer that expires in 50µs and place 
the child thread on C0.

45



Solution 2: Deferring Thread Migrations
We propose to delay migrations with Smove.

Parent thread runs on C0, calls the fork() syscall.
CFS decides to place the child thread on C1.

If C1 runs at a low frequency, instead of placing the child 
thread on C1, we arm a timer that expires in 50µs and place 
the child thread on C0.

Parent thread calls the wait() syscall, the child thread is 
scheduled on C0, the timer is cancelled.

46



Solution 2: Deferring Thread Migrations
We propose to delay migrations with Smove.

Parent thread runs on C0, calls the fork() syscall.
CFS decides to place the child thread on C1.

If C1 runs at a low frequency, instead of placing the child 
thread on C1, we arm a timer that expires in 50µs and place 
the child thread on C0.

Parent thread calls the wait() syscall, the child thread is 
scheduled on C0, the timer is cancelled.

This sequential program uses a single core, running at a 
high frequency, and C1 stays idle.
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Solution 2: Deferring Thread Migrations

52

23% faster than 
CFS

21% less energy 
used

<5 cores used, more 
Turbo
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Our Solutions: Slocal and Smove

Both solutions behave similarly on our case study
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Both solutions behave similarly on our case study
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Slocal   
    

Smove   

is more aggressive and simple (3 lines of code),
changes the behavior of CFS and heavily relies on periodic load 
balancing to fix mistakes

is more balanced, and accounts for frequency,
more complicated (124 lines of code, timers), but keeps the overall 
ideas of CFS



Performance and Energy Evaluation
60 applications from:

- NAS: HPC applications,
- Phoronix: web servers, compilations, DNN libs, compression, databases, ...
- hackbench & sysbench OLTP

2 machine markets:
- Server: 80-core Intel® Xeon E7-8870 v4 (160 HW threads)
- Desktop: 4-core AMD® Ryzen 5 3400G (8 HW threads)

2 frequency scaling governors: 
- powersave
- schedutil
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Performance and Energy Evaluation
Compared to CFS, server machine, powersave governor, higher is better
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>23 apps outperform CFS

3-4 apps deteriorated

Same performance, less 
energy consumed

Detailed analysis in the 
paper!



Take away
Frequency inversion problem

- FTL + frequency agnostic scheduler
- New because of per-core dynamic frequency scaling

Solutions implemented in Linux
- Slocal: simple, aggressive, relies on load balancing
- Smove: frequency-aware, more balanced
- Both are available at: https://gitlab.inria.fr/whisper-public/atc20

Possible extensions:
- Fully frequency aware scheduler
- Modeling the frequency behavior of a CPU (#active cores, temperature, 

instruction set, …)
- Shortening FTL with faster frequency reconfiguration
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https://gitlab.inria.fr/whisper-public/atc20

